A non-zero vector is said to be a generalized eigenvector of associated to the eigenvalue if and only if there exists an integer such that where is the identity matrix . Note that ordinary eigenvectors satisfy. Therefore, an ordinary eigenvector is also a generalized eigenvector. However, the converse is not necessarily true.An eigenspace is the collection of eigenvectors associated with each eigenvalue for the linear transformation applied to the eigenvector. The linear transformation is often a square matrix (a matrix that has the same number of columns as it does rows). Determining the eigenspace requires solving for the eigenvalues first as follows: Where A is ...Computing Eigenvalues and Eigenvectors. We can rewrite the condition Av = λv A v = λ v as. (A − λI)v = 0. ( A − λ I) v = 0. where I I is the n × n n × n identity matrix. Now, in order for a non-zero vector v v to satisfy this equation, A– λI A – λ I must not be invertible. Otherwise, if A– λI A – λ I has an inverse,Basis-Basis untuk Ruang Eigen: Materi, Contoh Soal dan Pembahasan. Secara definisi, vektor eigen dari matriks A yang bersesuaian dengan nilai eigen λ λ adalah vektor taknol dalam ruang solusi dari sistem linear yang memenuhi (λI −A)x= 0 ( λ I − A) x = 0. Ruang solusi ini disebut ruang eigen (eigenspace) dari A yang bersesuaian dengan λ λ.Eigenvectors as basis vectors. I know this kind of question has been asked before but I did not understand it completely. So while studying operators and eigenstates, I came across two formulas, A^|ψ = |ϕ A ^ | ψ = | ϕ and, A^|ψ = a|ψ . A ^ | ψ = a | ψ . So according to me if |ψ | ψ is an eigen vector of the operator it returns a ...The space of all vectors with eigenvalue λ λ is called an eigenspace eigenspace. It is, in fact, a vector space contained within the larger vector space V V: It contains 0V 0 V, since L0V = 0V = λ0V L 0 V = 0 V = λ 0 V, and is closed under addition and scalar multiplication by the above calculation. All other vector space properties are ...The space of all vectors with eigenvalue λ λ is called an eigenspace eigenspace. It is, in fact, a vector space contained within the larger vector space V V: It contains 0V 0 V, since L0V = 0V = λ0V L 0 V = 0 V = λ 0 V, and is closed under addition and scalar multiplication by the above calculation. All other vector space properties are ...The eigenspace corresponding to λ=2 is the solution space of the system The coefficient matrix also has rank 2 and nullity 1, so the eigenspace corresponding to λ=2 is also one-dimensional. Since the eigenspaces produce a total of two basis vectors, the matrix A is not diagonalizable. 24Pauli measurements generalize computational basis measurements to include measurements in other bases and of parity between different qubits. In such cases, it is common to discuss measuring a Pauli operator, which is an operator such as X, Y, Z or Z ⊗ Z, X ⊗ X, X ⊗ Y, and so forth. For the basics of quantum measurement, see The qubit …To find an eigenvalue, λ, and its eigenvector, v, of a square matrix, A, you need to:. Write the determinant of the matrix, which is A - λI with I as the identity matrix.. Solve the equation det(A - λI) = 0 for λ (these are the eigenvalues).. Write the system of equations Av = λv with coordinates of v as the variable.. For each λ, solve the system of …The space of all vectors with eigenvalue λ λ is called an eigenspace eigenspace. It is, in fact, a vector space contained within the larger vector space V V: It contains 0V 0 V, since L0V = 0V = λ0V L 0 V = 0 V = λ 0 V, and is closed under addition and scalar multiplication by the above calculation. All other vector space properties are ...Algebra questions and answers. Find the characteristic equation of A, the eigenvalues of A, and a basis for the eigenspace corresponding to each eigenvalue. A = -7 1 5 0 1 1 0 0 4 (a) the characteristic equation of A (b) the eigenvalues of A (Enter your answers from smallest to largest.) (14, 89, 19) = ( 7,1,4 (c) a basis for the eigenspace ...Eigenspace just means all of the eigenvectors that correspond to some eigenvalue. The eigenspace for some particular eigenvalue is going to be equal to the set of vectors that satisfy this equation. Well, the set of vectors that satisfy this equation is just the null space of that right there. For those who sell scrap metal, like aluminum, for example, they know the prices fluctuate on a daily basis. There are also price variances from one market to the next. Therefore, it’s essential to conduct research about how to find the mar...Solution. By definition, the eigenspace E2 corresponding to the eigenvalue 2 is the null space of the matrix A − 2I. That is, we have E2 = N(A − 2I). We reduce the …Basis for 1: v1 0 1 1 Basis for 2: v2 0 1 0 v3 1 0 1 Step 3: Construct P from the vectors in step 2. P 00 1 11 0 10 1 ... If A is diagonalizable and k is a basis for the eigenspace corresponding to k for each k, then the total collection of vectors in the sets 1, , p forms an eigenvector basis for Rn. 6. Title: S:TransparenciesChapter_5sciSep 17, 2022 · A basis for the \(3\)-eigenspace is \(\bigl\{{-4\choose 1}\bigr\}.\) Concretely, we have shown that the eigenvectors of \(A\) with eigenvalue \(3\) are exactly the nonzero multiples of \({-4\choose 1}\). The space of all vectors with eigenvalue λ λ is called an eigenspace eigenspace. It is, in fact, a vector space contained within the larger vector space V V: It contains 0V 0 V, since L0V = 0V = λ0V L 0 V = 0 V = λ 0 V, and is closed under addition and scalar multiplication by the above calculation. All other vector space properties are ...6 Ağu 2018 ... By applying an our own approaches the considered problem is transformed into an eigenvalue problem for suitable integral equation in terms of ...Basis for the eigenspace of each eigenvalue, and eigenvectors. 1. Finding the eigenvectors associated with the eigenvalues. 1. Eigenspace for $4 \times 4$ matrix. 0.Proposition 2.7. Any monic polynomial p2P(F) can be written as a product of powers of distinct monic irreducible polynomials fq ij1 i rg: p(x) = Yr i=1 q i(x)m i; degp= Xr i=1Here's an intuitive overview: What is a matrix? A matrix is a representation of a linear transformation between two vector spaces. The way we get this representation is by considering the linear transformation of basis vectors.If we know the linear transformation of all the basis vectors, we know the transformation of any vector by expressing it as a …A generalized eigenvector of A, then, is an eigenvector of A iff its rank equals 1. For an eigenvalue λ of A, we will abbreviate (A−λI) as Aλ . Given a generalized eigenvector vm of A of rank m, the Jordan chain associated to vm is the sequence of vectors. J(vm):= {vm,vm−1,vm−2,…,v1} where vm−i:= Ai λ ∗vm.Therefore, (λ − μ) x, y = 0. Since λ − μ ≠ 0, then x, y = 0, i.e., x ⊥ y. Now find an orthonormal basis for each eigenspace; since the eigenspaces are mutually orthogonal, these vectors together give an orthonormal subset of Rn. Finally, since symmetric matrices are diagonalizable, this set will be a basis (just count dimensions).The geometric multiplicity (dimension of the eigenspace) of each of the eigenvalues of A A equals its algebraic multiplicity (root order of eigenvalue) if and only if the matrix A A is diagonalizable (i.e. for A ∈ Kn×n A ∈ K n × n there exists P, D ∈ Kn×n P, D ∈ K n × n, where P P is invertible and D D is diagonal, such that P−1AP ...Free Matrix Eigenvalues calculator - calculate matrix eigenvalues step-by-step.basis for each eigenspace to be orthonormal. Finding Eigenpairs (Finite-Dimensional Case) The goal is to ﬁnd every scalar λ and every corresponding nonzero vector v satisfying L(v) = λv (7.1) where L is some linear transformation. Note that this equation is completely equivalent to theis called a generalized eigenspace of Awith eigenvalue . Note that the eigenspace of Awith eigenvalue is a subspace of V . Example 6.1. A is a nilpotent operator if and only if V = V 0. Proposition 6.1. Let Abe a linear operator on a nite dimensional vector space V over an alge-braically closed eld F, and let 1;:::; sbe all eigenvalues of A, n 1;nIf you’re like most people, you probably use online search engines on a daily basis. But are you getting the most out of your searches? These five tips can help you get started. When you’re doing an online search, it’s important to be as sp...http://adampanagos.orgCourse website: https://www.adampanagos.org/alaAn eigenvector of a matrix is a vector v that satisfies Av = Lv. In other words, after ...It's not "unusual" to be in this situation. If there are two eigenvalues and each has its own 3x1 eigenvector, then the eigenspace of the matrix is the span of two 3x1 vectors. Note that it's incorrect to say that the eigenspace is 3x2. The eigenspace of the matrix is a two dimensional vector space with a basis of eigenvectors.The Null Space Calculator will find a basis for the null space of a matrix for you, and show all steps in the process along the way.Consider the basis S = 8 <: e1 = 2 4 1 0 3 5;e 2 = 2 4 0 1 3 5 9 =;. Then let A = [T] S S = 2 4 0 1 0 0 3 5. To find eigenvalues, we need to solve the equation det(A I) = 0. The equation is 2 = 0. The only solution is 0. Therefore there is a generalized eigenspace of dimension 2 corresponding to the eigenvalue 0. Then since VG 0 = Nul((A 0I)2), weI'm stuck on this linear algebra problem and I need some help. The problem is: $$ B=\left[\begin{array}{rrr} 5 & -2 & -6 \\ -2 & 2 & 3 \\ 2 & -1 & -2 \end{array}\right] $$ has eigenvalues 1 and 3, find the basis to the eigenspace for the corresponding eigenvalue. I need to find the eigenvectors of B that correspond to each eigenvalue, and then use …Jul 15, 2016 · Sorted by: 14. The dimension of the eigenspace is given by the dimension of the nullspace of A − 8I =(1 1 −1 −1) A − 8 I = ( 1 − 1 1 − 1), which one can row reduce to (1 0 −1 0) ( 1 − 1 0 0), so the dimension is 1 1. Note that the number of pivots in this matrix counts the rank of A − 8I A − 8 I. Thinking of A − 8I A − 8 ... You’ve described the general process of finding bases for the eigenspaces correctly. Note that since there are three distinct eigenvalues, each eigenspace will be one-dimensional (i.e., each eigenspace will have exactly one eigenvector in your example). If there were less than three distinct eigenvalues (e.g. $\lambda$ =2,0,2 or $\lambda$ …is called a generalized eigenspace of Awith eigenvalue . Note that the eigenspace of Awith eigenvalue is a subspace of V . Example 6.1. A is a nilpotent operator if and only if V = V 0. Proposition 6.1. Let Abe a linear operator on a nite dimensional vector space V over an alge-braically closed eld F, and let 1;:::; sbe all eigenvalues of A, n 1;nThe eigenvectors will no longer form a basis (as they are not generating anymore). One can still extend the set of eigenvectors to a basis with so called generalized eigenvectors, reinterpreting the matrix w.r.t. the latter basis one obtains a upper diagonal matrix which only takes non-zero entries on the diagonal and the 'second diagonal'.If v1,...,vmis a basis of the eigenspace Eµform the matrix S which contains these vectors in the ﬁrst m columns. Fill the other columns arbitrarily. Now B = S−1AS has the property that the ﬁrst m columns are µe1,..,µem, where eiare the standard vectors. Because A and B are similar, they have the same eigenvalues.gives a basis. The eigenspace associated to 2 = 2, which is Ker(A 2I): v2 = 0 1 gives a basis. (b) Eigenvalues: 1 = 2 = 2 Ker(A 2I), the eigenspace associated to 1 = 2 = 2: v1 = 0 1 gives a basis. (c) Eigenvalues: 1 = 2; 2 = 4 Ker(A 2I), the eigenspace associated to 1 = 2: v1 = 3 1 gives a basis. Ker(A 4I), the eigenspace associated to 2 = 4 ... is called a generalized eigenspace of Awith eigenvalue . Note that the eigenspace of Awith eigenvalue is a subspace of V . Example 6.1. A is a nilpotent operator if and only if V = V 0. Proposition 6.1. Let Abe a linear operator on a nite dimensional vector space V over an alge-braically closed eld F, and let 1;:::; sbe all eigenvalues of A, n 1;n2. Your result is correct. The matrix have an eigenvalue λ = 0 λ = 0 of algebraic multiplicity 1 1 and another eigenvalue λ = 1 λ = 1 of algebraic multiplicity 2 2. The fact that for for this last eigenvalue you find two distinct eigenvectors means that its geometric multiplicity is also 2 2. this means that the eigenspace of λ = 1 λ = 1 ...$\begingroup$ The first two form a basis of one eigenspace, and the second two form a basis of the other. So this isn't quite the same answer, but it is certainly related. $\endgroup$ – Ben GrossmannHow do I find the basis for the eigenspace? Ask Question Asked 8 years, 11 months ago Modified 8 years, 11 months ago Viewed 5k times 0 The question states: Show that λ is an eigenvalue of A, and find out a basis for the eigenspace Eλ E λ A =⎡⎣⎢ 1 −1 2 0 1 0 2 1 1⎤⎦⎥, λ = 1 A = [ 1 0 2 − 1 1 1 2 0 1], λ = 1Being on a quarterly basis means that something is set to occur every three months. Every year has four quarters, so being on a quarterly basis means a certain event happens four times a year.The Gram-Schmidt process (or procedure) is a chain of operation that allows us to transform a set of linear independent vectors into a set of orthonormal vectors that span around the same space of the original vectors. The Gram Schmidt calculator turns the independent set of vectors into the Orthonormal basis in the blink of an eye.Since $(0,-4c,c)=c(0,-4,1)$ , your subspace is spanned by one non-zero vector $(0,-4,1)$, so has dimension $1$, since a basis of your eigenspace consists of a single vector. You should have a look back to the definition of dimension of a vector space, I think... $\endgroup$ –An eigenspace is the collection of eigenvectors associated with each eigenvalue for the linear transformation applied to the eigenvector. The linear transformation is often a square matrix (a matrix that has the same number of columns as it does rows). Determining the eigenspace requires solving for the eigenvalues first as follows: Where A is ...The set of all eigenvectors of T corresponding to the same eigenvalue, together with the zero vector, is called an eigenspace, or the characteristic space of T associated with that eigenvalue. [10] If a set of eigenvectors of T forms a basis of the domain of T , then this basis is called an eigenbasis . eigenspaces equals n, and this happens if and only if the dimension of the eigenspace for each k equals the multiplicity of k. c. If A is diagonalizable and k is a basis for the eigenspace corresponding to k for each k, then the total collection of vectors in the sets 1, , p forms an eigenvector basis for Rn. 6Answers: (2) Eigenvalue 1, eigenspace basis f(1;0)g(3) Eigenvalue 1, eigenspace basis f(1;0)g; eigenvalue 2, eigenspace basis f(2;1)g(4) Eigen-value 1, eigenspace basis f(1;0;0);(0;1;0)g; eigenvalue 2, eigenspace basis f(0;0;1)g. 5. Lay, 5.1.25. Solution: Since is an eigenvalue of A, there exists a vector ~x 6= 0Jul 15, 2016 · Sorted by: 14. The dimension of the eigenspace is given by the dimension of the nullspace of A − 8I =(1 1 −1 −1) A − 8 I = ( 1 − 1 1 − 1), which one can row reduce to (1 0 −1 0) ( 1 − 1 0 0), so the dimension is 1 1. Note that the number of pivots in this matrix counts the rank of A − 8I A − 8 I. Thinking of A − 8I A − 8 ... The space of all vectors with eigenvalue λ λ is called an eigenspace eigenspace. It is, in fact, a vector space contained within the larger vector space V V: It contains 0V 0 V, since L0V = 0V = λ0V L 0 V = 0 V = λ 0 V, and is closed under addition and scalar multiplication by the above calculation. All other vector space properties are ...Definition of eigenbasis in the Definitions.net dictionary. Meaning of eigenbasis. What does eigenbasis mean? Information and translations of eigenbasis in the most comprehensive …More than just an online eigenvalue calculator. Wolfram|Alpha is a great resource for finding the eigenvalues of matrices. You can also explore eigenvectors, characteristic polynomials, invertible matrices, …Note that since there are three distinct eigenvalues, each eigenspace will be one-dimensional (i.e., each eigenspace will have exactly one eigenvector in your example). If there were less than three distinct eigenvalues (e.g. $\lambda$ =2,0,2 or $\lambda$ =2,1), there would be at least one eigenvalue that yields more than one eigenvector.Eigenvalues and eigenvectors. 1.) Show that any nonzero linear combination of two eigenvectors v,w corresponging to the same eigenvalue is also an eigenvector. 2.) Prove that a linear combination c v + d w, with c, d ≠ 0, of two eigenvectors corresponding to different eigenvalues is never an eigenvector. 3.)Or we could say that the eigenspace for the eigenvalue 3 is the null space of this matrix. Which is not this matrix. It's lambda times the identity minus A. So the null space of this matrix is the eigenspace. So all of the values that satisfy this make up the eigenvectors of the eigenspace of lambda is equal to 3. Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this site About Us Learn more about Stack Overflow the company, and our products.1 Answer. The set of eigenvalues is not an Eigenspace (set of eigenvectors for a particular eigenvalue, plus 0 0 → ), but rather the spectrum, which you can denote σA σ A. Your question asks for the set of eigenvalues, but your comment asks for the span of the eigenvectors, which you could call Eλ E λ or Eλ(A) E λ ( A) as in the Cliff's ...Jan 15, 2021 · Any vector v that satisfies T(v)=(lambda)(v) is an eigenvector for the transformation T, and lambda is the eigenvalue that’s associated with the eigenvector v. The transformation T is a linear transformation that can also be represented as T(v)=A(v). Jan 22, 2017 · Find a Basis of the Vector Space of Polynomials of Degree 2 or Less Among Given Polynomials. Find Values of a, b, c such that the Given Matrix is Diagonalizable. Idempotent Matrix and its Eigenvalues. Diagonalize the 3 by 3 Matrix Whose Entries are All One. The Null Space Calculator will find a basis for the null space of a matrix for you, and show all steps in the process along the way.Find the basis of the corresponding Eigenspace. I found found the eigenvalues to be: $\alpha$: over reals and then only the value $\lambda_1=3$ $\beta$: over complex and then the values $\lambda_1=3$, $\lambda_2=i$ and $\lambda_3=-i$ How would I proceed to find a basis for the Eigenspaces of the two matrices$In this video, we take a look at the computation of eigenvalues and how to find the basis for the corresponding eigenspace.Eigenspace and eigenvector inside a Hilbert space. Given {vn}∞ n=1 an orthonormal sequence in a Hilbert space. Let {λn}∞ n=1 a sequence of numbers and F: H → H defined by Fx =∑∞ n=1λn x,vn vn. Show that vn is an eigenvector with eigenvalue λn. How do I show for each n, what is the eigenspace of λn?Looking to keep your Floor & Decor wood flooring clean and looking its best? One of the great things about hardwood floors is that they aren’t too difficult to maintain. To keep your wood floors looking and feeling great, it’s important to ...An eigenspace is the collection of eigenvectors associated with each eigenvalue for the linear transformation applied to the eigenvector. The linear transformation is often a square matrix (a matrix that has the same number of columns as it does rows). Determining the eigenspace requires solving for the eigenvalues first as follows: Where A is ...The Bible is one of the oldest religious texts in the world, and the basis for Catholic and Christian religions. There have been periods in history where it was hard to find a copy, but the Bible is now widely available online.The eigenspace corresponding to λ=2 is the solution space of the system The coefficient matrix also has rank 2 and nullity 1, so the eigenspace corresponding to λ=2 is also one-dimensional. Since the eigenspaces produce a total of two basis vectors, the matrix A is not diagonalizable. 24Contents [ hide] Diagonalization Procedure. Example of a matrix diagonalization. Step 1: Find the characteristic polynomial. Step 2: Find the eigenvalues. Step 3: Find the eigenspaces. Step 4: Determine linearly independent eigenvectors. Step 5: Define the invertible matrix S. Step 6: Define the diagonal matrix D.Finding the basis for the eigenspace corresopnding to eigenvalues. 0. Find a basis for the eigenspaces corresponding to the eigenvalues. 2.Keyw ords: eigenspace methods, robust estimation, vie w-based representations, gesture recognition, parametric models of optical ﬂow , tracking, object recognition, motion analysis 1.The eigenspace is the kernel of A− λIn. Since we have computed the kernel a lot already, we know how to do that. The dimension of the eigenspace of λ is called the geometricmultiplicityof λ. Remember that the multiplicity with which an eigenvalue appears is called the algebraic multi-plicity of λ:Computing Eigenvalues and Eigenvectors. We can rewrite the condition Av = λv A v = λ v as. (A − λI)v = 0. ( A − λ I) v = 0. where I I is the n × n n × n identity matrix. Now, in order for a non-zero vector v v to satisfy this equation, A– λI A – λ I must not be invertible. Otherwise, if A– λI A – λ I has an inverse, Calculate. Find the basis for eigenspace online, eigenvalues and eigenvectors calculator with steps.You must be talking about the multiplicity of the eigenvalue as root of the characteristic polynomial (which is just one possible tool to find eigenvalues; nothing in the definition of eigenvalues says that this is the most natural notion of multiplicity for eigenvalues, though people do tend to assume that).For eigenvalues outside the fraction field of the base ring of the matrix, you can choose to have all the eigenspaces output when the algebraic closure of the field is implemented, such as the algebraic numbers, QQbar.Or you may request just a single eigenspace for each irreducible factor of the characteristic polynomial, since the others may be formed …Computing Eigenvalues and Eigenvectors. We can rewrite the condition Av = λv A v = λ v as. (A − λI)v = 0. ( A − λ I) v = 0. where I I is the n × n n × n identity matrix. Now, in order for a non-zero vector v v to satisfy this equation, A– λI A – λ I must not be invertible. Otherwise, if A– λI A – λ I has an inverse,So the eigenspace is a line and NOT all of R^2. ... The change of basis matrix is just a matrix with all of these vectors as columns. It's very easy to construct. But if you change your basis from x to our new basis, you multiply it by the inverse of that. We've seen that multiple times. If they're all orthonormal, then this is the same thing ...The vectors: and together constitute the basis for the eigenspace corresponding to the eigenvalue l = 3. Theorem : The eigenvalues of a triangular matrix are the entries on its main diagonal. Example # 3 : Show that the theorem holds for "A".A = [2 0 5 2] A = [ 2 5 0 2]. Determine the eigenvalues of A A, and a minimal spanning set (basis) for each eigenspace. Note that the dimension of the eigenspace corresponding …May 31, 2015 · How to find the basis for the eigenspace if the rref form of λI - A is the zero vector? 0. Orthogonal Basis of eigenspace. 1. Computing Eigenvalues and Eigenvectors. We can rewrite the condition Av = λv A v = λ v as. (A − λI)v = 0. ( A − λ I) v = 0. where I I is the n × n n × n identity matrix. Now, in order for a non-zero vector v v to satisfy this equation, A– λI A – λ I must not be invertible. Otherwise, if A– λI A – λ I has an inverse,Skip to finding a basis for each eigenvalue's eigenspace: 6:52 A basis is a collection of vectors which consists of enough vectors to span the space, but few enough vectors that they remain linearly independent. ... Determine the eigenvalues of , and a minimal spanning set (basis) for each eigenspace. Note that the dimension of the eigenspace corresponding to a given eigenvalue must be at least 1, since .... Here's an intuitive overview: What is a matrix? A matrix is a reShow that λ is an eigenvalue of A, and find out a basis for the eigens So your hypothesis is that T: Rn →Rn T: R n → R n is the linear transformation defined by T(u) = Au T ( u) = A u, where A A is a matrix such that A2 = 0 A 2 = 0 and A ≠ 0 A ≠ 0. Your problem is to prove there is not a basis of eigenvectors of T T. Now some comments on your answer. You write " 0 0 is an eigenvalue so for every u ∈ … $\begingroup$ $\mathbf{v}$ has eigenvalue 5 The space of all vectors with eigenvalue λ λ is called an eigenspace eigenspace. It is, in fact, a vector space contained within the larger vector space V V: It contains 0V 0 V, since L0V = 0V = λ0V L 0 V = 0 V = λ 0 V, and is closed under addition and scalar multiplication by the above calculation. All other vector space properties are ... The basis of each eigenspace is the span of the ...

Continue Reading## Popular Topics

- basis for each eigenspace to be orthonormal. Finding Eigenpairs (...
- The generalized eigenvalue problem is to find a basis...
- Show that λ is an eigenvalue of A, and find out a basis for the...
- Mar 2, 2015 · 2. This is actually the eigenspace: E λ ...
- The Basis B1 bands are like an MP3 player, but track your...
- Feb 13, 2018 · Also I have to write down the eigen spa...
- Understanding Linear Algebra (Austin) 4: Eigenvalues and Eig...
- Oct 28, 2016 · Find the eigenvalues and a basis for an eigenspace of...